tan | cos | sin |
-tan | cos | -sin |
tan}tan/(1tantanj | coscossinsin | sincos}cossin |
2tan/1-tan2 | cos2-sin2=1-2sin2=2cos2-1 | 2sincos |
tan2(/2) 1-cos/1+cos |
cos2(/2)(1+cos)/2 | sin2(/2)(1-cos)/2 |
{cos(+)+cos(-)p/Q | {sin(+)-sin(-)p/Q | {sin(+)+sin(-)p/Q |
2cos{(A+B)/2} ~sin{(A-B)/2} |
2sin{(A+B)/2} ~cos{(A-B)/2} |
-{cos(+)-cos(-)p/Q |
a2+b2sin(+) sin=b/a2+b2 cos=/a2+b2 |
-2sin{(A+B)/2} ~sin{(A-B)/2} |
2cos{(A+B)/2} ~cos{(A-B)/2} |